

Developers Guide

OpenL Tablets BRMS
Release 5.22

Document number: TP_OpenL_DG_3.4_LSh

Revised: 03-10-2020

OpenL Tablets Documentation is licensed under a Creative Commons Attribution 3.0 United States License.

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/

Table of Contents

1 Preface ... 5

1.1 Audience .. 5
1.2 Related Information .. 5
1.3 Typographic Conventions .. 5

2 Introducing OpenL Tablets .. 7

2.1 What Is OpenL Tablets? ... 7
2.2 Basic Concepts ... 7

Rules .. 8
Tables .. 8
Projects ... 8
Wrapper .. 8
Execution Mode for OpenL Project ... 8

2.3 System Overview ... 9
2.4 Quick Start with OpenL Tablets ... 9

3 OpenL Tablets Rules Projects .. 11

3.1 OpenL Rules Project .. 11
3.2 Rules Project Descriptor .. 11

Quick Overview ... 11
Descriptor Elements .. 12

3.3 Project Resolving ... 14
3.4 How to Start with OpenL Rules Project ... 14

Creating a Project Using the Maven Archetype .. 14
Creating a Project in OpenL Tablets WebStudio ... 15
Creating a Project Manually .. 16
Editing Rules .. 17
Using OpenL Tablets Rules from Java Code .. 17
Handling Data and Data Types in OpenL Tablets .. 23

3.5 Customizing Table Properties .. 25
Understanding Table Properties Customization ... 25
Tables Priority Rules .. 25

3.6 Tables Validation ... 26
Table Properties Validators ... 26
Existing Validators ... 26

3.7 Module Dependencies: Classloaders... 27
3.8 Peculiarities of OpenL Tablets Implementation .. 28

Lookup Tables Implementation Details... 28
Range Types Instantiation ... 29

4 OpenL Tablets Business Expression Language .. 30

4.1 Java Business Object Model as a Basis for OpenL Tablets Business Vocabulary ... 30
4.2 New Keywords and Avoiding Possible Naming Conflicts .. 30
4.3 Simplifying Expressions with Explanatory Variables ... 31
4.4 Simplifying Expressions by Using the Unique in Scope Concept ... 31
4.5 OpenL Tablets Programming Language Framework ... 31

OpenL Tablets Grammars.. 32

Context, Variables and Types .. 33
OpenL Tablets Type System .. 33
OpenL Tablets as OpenL Tablets Type Extension .. 34
Operators .. 34
Binary Operators Semantic Map ... 35
Unary Operators ... 35
Cast Operators .. 35
Strict Equality and Relation Operators .. 35
List of org.openl.j Operators ... 35
List of opg.openl.j Operator Properties .. 37

5 Externalized Configuration .. 38

5.1 Accessing Command Line Properties .. 38
5.2 Using Property Files ... 38

Application Property Files ... 38
Profile-Specific Properties ... 38

OpenL Tablets Developer's Guide Preface

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 5 of 39

1 Preface
This preface is an introduction to the OpenL Tablets Developer's Guide.

The following topics are included in this preface:

• Audience

• Related Information

• Typographic Conventions

1.1 Audience
This guide is mainly intended for developers who create applications employing the table based decision making
mechanisms offered by the OpenL Tablets technology. However, business analysts and other users can also
benefit from this guide by learning the basic OpenL Tablets concepts described herein.

Basic knowledge of Java, Ant, and Microsoft Excel is required to use this guide effectively.

1.2 Related Information
The following table lists sources of information related to contents of this guide:

Related information

Title Description

[OpenL Tablets WebStudio User Guide] Document describing OpenL Tablets WebStudio, a web application for
managing OpenL Tablets projects through a web browser.

http://openl-tablets.org/ OpenL Tablets open source project website.

1.3 Typographic Conventions
The following styles and conventions are used in this guide:

Typographic styles and conventions

Convention Description

Bold • Represents user interface items such as check boxes, command buttons, dialog boxes,
drop-down list values, field names, menu commands, menus, option buttons, perspectives,
tabs, tooltip labels, tree elements, views, and windows.

• Represents keys, such as F9 or CTRL+A.

• Represents a term the first time it is defined.

Courier Represents file and directory names, code, system messages, and command-line commands.

Courier Bold Represents emphasized text in code.

Select File > Save As Represents a command to perform, such as opening the File menu and selecting Save As.

Italic • Represents any information to be entered in a field.

• Represents documentation titles.

< > Represents placeholder values to be substituted with user specific values.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf
http://openl-tablets.org/

OpenL Tablets Developer's Guide Preface

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 6 of 39

Typographic styles and conventions

Convention Description

Hyperlink Represents a hyperlink. Clicking a hyperlink displays the information topic or external
source.

[name of guide] Reference to another guide that contains additional information on a specific feature.

OpenL Tablets Developer's Guide Introducing OpenL Tablets

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 7 of 39

2 Introducing OpenL Tablets
This chapter introduces OpenL Tablets and describes its main concepts.

The following topics are included in this chapter:

• What Is OpenL Tablets?

• Basic Concepts

• System Overview

• Quick Start with OpenL Tablets

2.1 What Is OpenL Tablets?
OpenL Tablets is a business rules management system and business rules engine based on tables presented in
Excel documents. Using unique concepts, OpenL Tablets facilitates treating business documents containing
business logic specifications as executable source code. Since the format of tables used by OpenL Tablets is
familiar to business users, OpenL Tablets bridges a gap between business users and developers, thus reducing
costly enterprise software development errors and dramatically shortening the software development cycle.

In a very simplified overview, OpenL Tablets can be considered as a table processor that extracts tables from
Excel documents and makes them accessible from the application.

The major advantages of using OpenL Tablets are as follows:

• OpenL Tablets removes the gap between software implementation and business documents, rules, and
policies.

• Business rules become transparent to developers.

For example, decision tables are transformed into Java methods or directly into web service methods. The
transformation is performed automatically.

• OpenL Tablets verifies syntax and type errors in all project document data, providing convenient and
detailed error reporting. OpenL Tablets can directly point to a problem in an Excel document.

• OpenL Tablets provides calculation explanation capabilities, enabling expansion of any calculation result by
pointing to source arguments in the original documents.

• OpenL Tablets enables users to create and maintain tests to insure reliable work of all rules.

• OpenL Tablets provides cross-indexing and search capabilities within all project documents.

• OpenL Tablets provides full rules lifecycle support through its business rules management applications.

• OpenL Tablets supports the .xls and .xlsx file formats.

2.2 Basic Concepts
This section describes the basic concepts of OpenL Tablets and includes the following topics:

• Rules

• Tables

• Projects

• Wrapper

• Execution Mode for OpenL Project

OpenL Tablets Developer's Guide Introducing OpenL Tablets

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 8 of 39

Rules

In OpenL Tablets, a rule is a logical statement consisting of conditions and actions. If a rule is called and all its
conditions are true, then the corresponding actions are executed. Basically, a rule is an IF-THEN statement. The
following is an example of a rule expressed in human language:

If a service request costs less than 1,000 dollars and takes less than 8 hours to execute, then the service request
must be approved automatically.

Instead of executing actions, rules can also return data values to the calling program.

Tables

Basic information OpenL Tablets deals with, such as rules and data, is presented in tables. Different types of
tables serve different purposes. For more information on table types, see [OpenL Tablets Reference Guide], the
Table Types section.

Projects

An OpenL Tablets project is a container of all resources required for processing rule related information. Usually,
a project contains Excel files and Java code. For more information on projects, see [OpenL Tablets Reference
Guide], chapter working with Projects.

There can be situations where OpenL Tablets projects are used in the development environment but not in
production, depending on the technical aspects of a solution.

Wrapper

A wrapper is a Java object that exposes rule tables via Java methods and data tables as Java objects and allows
developers to access table information from code. Wrappers are essential for solutions where compiled OpenL
Tablets project code is embedded in solution applications. If tables are accessed through web services, client
applications are not aware of wrappers, but they are still used on the server.

For more information on wrappers, see Using OpenL Tablets rules from Java Code.

Execution Mode for OpenL Project

Execution mode for OpenL project is a light weight compilation mode that enables only evaluating of rules; but
editing, tracing and search are not available. Since the Engine will not load test tables and keep debug
information in memory in this mode, memory consumption is up to 5 times less than for debug mode.

By default, the execution mode (exectionMode=true) is used in OpenL Tablets Web Services.

The debug mode (exectionMode=false) is used by default in OpenL Tablets WebStudio.

Flag indicating required mode is introduced in runtime API and in wrappers.

To compile an OpenL Tablets project in execution mode, proceed as follows:

• If the OpenL Tablets high level API (instantiation strategies) is used, define an execution mode in a
constructor of the particular instantiation strategy.

• If the low level API (Engine factories) is used, set an execution mode flag using the
setExecutionMode(boolean) method.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Reference%20Guide.pdf
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Reference%20Guide.pdf
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Reference%20Guide.pdf

OpenL Tablets Developer's Guide Introducing OpenL Tablets

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 9 of 39

2.3 System Overview
The following diagram displays how OpenL Tablets is used by different types of users:

OpenL Tablets
project

P
P

PP
P

PP
P

P

Excel tables

Client
application

IDE

OpenL
WebStudio

Administrator

DeveloperSolution
developer

Business
user

Define and maintain,
test and fix rules

Manage projects,
measure performance

Work on OpenL Tablets
project with Maven

Execute rules through
wrappers

Execute rules through
web services

Figure 1: OpenL Tablets overview

A typical lifecycle of an OpenL Tablets project is as follows:

1. A business analyst creates a new OpenL Tablets project in OpenL Tablets WebStudio.

Optionally, development team may provide the analyst with a project in case of complex configuration.

The business analyst also creates correctly structured tables in Excel files based on requirements and
includes them in the project. Typically, this task is performed through Excel or OpenL Tablets WebStudio in a
web browser.

2. The business analyst performs unit and integration tests by creating test tables and performance tests on rules
through OpenL Tablets WebStudio.

As a result, fully working rules are created and ready to be used.

3. A developer adds configuration to the project according to application needs.

Alternatively, they can create a new OpenL Tablets project in their IDE via OpenL Maven Archetype and
adjust it to use business user input.

4. A developer employs business rules directly through the OpenL Tablets engine or remotely through web
services.

5. Whenever required, the business user updates or adds new rules to project tables.

OpenL Tablets business rules management applications, such as OpenL Tablets WebStudio, Rules
Repository, and Rule Service, can be set up to provide self-service environment for business user changes.

2.4 Quick Start with OpenL Tablets
OpenL Tablets provide a few ways to create a project. We recommend using Simple Project Maven Archetype
approach for creating a project for the first time or create it via OpenL Tablets WebStudio. For more information
on approaches for creating a project with detailed descriptions, see How to Start with OpenL Rules Project.

OpenL Tablets Developer's Guide Introducing OpenL Tablets

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 10 of 39

After a project is created, a zip or Excel file for importing the project to OpenL Tablets WebStudio can be used.
For more information on importing an existing project into OpenL Tablets WebStudio, see [OpenL Tablets
WebStudio User Guide].

OpenL Tablets WebStudio provides convenient UI to work with rules. However, its usage can be avoided by
working with rules from IDE only using the OpenL Tablets Maven plugin. The plugin provides compilation and
testing of rules and wrapper generation support.

Also, OpenL Tablets has OpenL Tablet Demo Package available at http://openl-tablets.org/. A demo is a zip file
that contains a Tomcat with configured OpenL Tablets WebStudio and OpenL Tablets Web Services projects. It
can be used to effectively start using OpenL Tablets products.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf
http://openl-tablets.org/

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 11 of 39

3 OpenL Tablets Rules Projects
This chapter describes how to create and use OpenL Tablets Rules projects.

The following topics are included in this chapter:

• OpenL Rules Project

• Rules Project Descriptor

• Project Resolving

• How to Start with OpenL Rules Project

• Customizing Table Properties

• Tables Validation

• Module Dependencies: Classloaders

• Peculiarities of OpenL Tablets Implementation

3.1 OpenL Rules Project
OpenL Rules project is a project that contains Excel files with OpenL Tablets rules and may contain a rules
project descriptor. The rules project descriptor is an XML file that defines project configuration and allows
setting project dependencies.

OpenL Rules Project can easily use rules from other projects via dependency functionality.

3.2 Rules Project Descriptor
A rules project descriptor is an XML file that contains information about the project and configuration details
used by OpenL to load and compile the rules project. The predefined name that is used for a rules project
descriptor is rules.xml.

This section includes the following topics:

• Quick Overview

• Descriptor Elements

Quick Overview

The following code fragment is an example of the rules project descriptor:
<project>

 <!-- Project name. -->

 <name>Project name</name>

 <!-- Optional. Comment string to project. -->

 <comment>comment</comment>

 <!-- OpenL project includes one or more rules modules. -->

 <modules>

 <module>

 <name>MyModule1</name>

 <type>API</type>

<!--

 Rules document which is usually an excel file in the project.

 -->

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 12 of 39

 <rules-root path="MyModule1.xls"/>

 </module>

 <module>

 <name>MyModule2</name>

 <type>API</type>

<!--

 Rules document which is usually an excel file in the project.

 -->

 <rules-root path="MyModule2.xls"/>

 <method-filter>

 <includes>

 <value> * </value>

 </includes>

 </method-filter>

 </module>

 </modules>

<dependencies>

 <dependency>

 <name>projectName</name>

 <autoIncluded>false</autoIncluded>

 </dependency>

 </dependencies>

 <properties-file-name-pattern>{lob}</properties-file-name-pattern>

 <properties-file-name-

processor>default.DefaultPropertiesFileNameProcessor</properties-file-name-processor>

 <!-- Project's classpath (list of all source dependencies). -->

 <classpath>

 <entry path="path1"/>

 <entry path="path2"/>

 </classpath>

</project>

Descriptor Elements

The descriptor file contains several sections that describe project configuration:

• Project Configurations

• Module Configurations

• Dependency Configurations

• Classpath Configurations

Project Configurations

The project configurations are as follows:

Project section

Tag Required Description

name yes Project name. It is a string value which defines a user-friendly project name.

comment no Comment for project.

dependency no Dependencies to projects.

modules yes Project modules. A project can have one or several modules.

classpath no Project relative classpath.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 13 of 39

Project section

Tag Required Description

properties-file-
name-pattern

no File name pattern to be used by the file name processor. The file name processor adds
extracted module properties from a module file name.

properties-file-
name-processor

no Custom implementation of
org.openl.rules.project.PropertiesFileNameProcessor used instead of
default implementation.

Module Configurations

The module configurations are as follows:

Module section

Tag Required Description

name yes/no Module name. It is a string value which defines a user-friendly module name.

Note: It is used by OpenL Tablets WebStudio application as a module display name.
It is not required for modules defined via wildcard.

type yes Module instantiation type. Possible values are case-insensitive and can be dynamic, api,
or static (deprecated). It defines the way of OpenL project instantiation.

classname yes/no Name of rules interface. It is used together with type. It is not required for the api type.

method-filer no Filter that defines tables to be used for interface generation. Java regular expression
can be used to define a filter for multiple methods.

rules-root yes/no Path to the main file of a rules module. It is used together with type. Ant pattern can be
used to define multiple modules via wildcard. For more information on Ant patterns,
see Ant patterns.

Dependency Configurations

The dependency configurations are as follows:

Dependency section

Tag Required Description

name yes Dependency project name.

autoIncluded yes Identifier, which, if set to true, that all modules from the dependency project will be used
in this project module.

If it is set to false, modules from the dependency project can be used in this project as
dependencies, and each module will define its own list of used dependency modules.

Classpath Configurations

The classpath configurations are as follows:

Classpath section

Tag Required Description

entry no Path for the classpath entry, that is, classes or jar file.

https://ant.apache.org/manual/dirtasks.html

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 14 of 39

3.3 Project Resolving
The org.openl.rules.project.resolving.ProjectResolver resolves OpenL Tablets projects in folders sent
to the method for scanning and tries to detect OpenL Tablets projects by predefined strategies. To use
ProjectResolver, call the instance static method that returns an instance of ProjectResolver.

Resolving strategies used by default are as follows:

Resolving strategies

Number Strategy Description

1. Project descriptor
resolving strategy

The strictest resolving strategy. It is based on the descriptor file as described previously
in this section.

2. Excel file resolving
strategy

A resolving strategy for the simplest OpenL project which contains only Excel files in
root folder without wrappers and descriptor. Each Excel file represents a module.

3.4 How to Start with OpenL Rules Project
Firstly, an OpenL Rules project must be created. It can be done in the following ways:

• using Maven archetype

• using OpenL Tablets WebStudio

• manually

See the following sections for detailed information:

• Creating a Project Using the Maven Archetype

• Creating a Project in OpenL Tablets WebStudio

• Creating a Project Manually

• Editing Rules

• Using OpenL Tablets Rules from Java Code

• Handling Data and Data Types in OpenL Tablets

Creating a Project Using the Maven Archetype

OpenL Tablets provides the Maven archetype which can be used to create a simple OpenL Rules project.

To create a project using the Maven archetype, proceed as follows:

1. Execute the following command in command line:
mvn archetype:generate

Maven runs the archetype console wizard.

2. Select the openl-simple-project-archetype menu item.

As an alternative way is using the following command:
mvn archetype:generate

–DarchetypeGroupId=org.openl.rules

–DarchetypeArtifactId=openl-simple-project-archetype

-DarchetypeVersion=5.X.X

3. Follow with the Maven creation wizard.

After all steps are completed, a new Maven based project appears in the file system. It is an OpenL Rules
project which has one module with simple rules in it.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 15 of 39

4. Execute the following command in the command line from the root of the project folder to compile the
project:
mvn install

After executing this command, the following files can be found in the target folder:

1. zip file with "-deployable" suffix for importing the project to OpenL Tablets WebStudio.

For more information, see [OpenL Tablets WebStudio User Guide].

2. zip file (with "-runnable" suffix) that can be executed after extracting it.

It demonstrates how OpenL Tablets rules can be invoked from Java code.

3. jar file that contains only compiled Java classes.

This jar can be put in classpath of the project and used as a depended library.

Creating a Project in OpenL Tablets WebStudio

OpenL Tablets WebStudio allows users to create new rule projects in the Repository in one of the following
ways:

• creating a rule project from template

• creating a rule project from Excel files

• creating a rule project from zip archive

• importing a rule project from workspace

The following diagram explains how projects are stored in OpenL Tablets WebStudio and then deployed and
used by OpenL Tablets Web Services:

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 16 of 39

Figure 2: OpenL Tablets WebStudio and OpenL Tablets Web Services Integration

When a user starts editing a project, it is extracted from Design Repository and placed in the file system, in a
user workspace. The project becomes locked in Design Repository for editing by other users. After editing is
finished, the user saves the project. An updated version of the project is saved to Design Repository and
becomes available for editing by other users.

OpenL Tablets Web Services use separate repository instance, Production Repository. OpenL Tablets WebStudio
can be configured to deploy complete and tested rules projects to that repository.

For more information, see [OpenL Tablets WebStudio User Guide].

Creating a Project Manually

OpenL does not oblige a user to use predefined ways of project creation and enables using the user’s own
project structure. The Project Resolving mechanism can be used as a base for the project structure definition.
Depending on the resolving strategy, more or less files and folders are to be created, but several project
elements definition is mandatory. For more information on manually creating a project, see OpenL Rules
Project.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 17 of 39

Editing Rules

When a project is created, business rules have to be defined. It can be done using OpenL Tablets WebStudio or
manually using MS Excel. If the simple rules project is used, there are several simple predefined rules that can be
used as an example.

Using OpenL Tablets Rules from Java Code

For access to rules and data in Excel tables, OpenL Tablets API is used. OpenL Tablets provides a wrapper to
facilitate easier usage.

This section illustrates the creation of a wrapper for a Simple project in IDE. There is only one rule hello1 in the
Simple project by default.

Figure 3: The hello1 rule table

Proceed as follows:

1. In the project src folder, create an interface as follows:
public interface Simple {

 void hello1(int i);

}

2. Create a wrapper object as follows:
import static java.lang.System.out;

import org.openl.rules.runtime.RulesEngineFactory;

public class Example {

 public static void main(String[] args) {

 //define the interface

 RulesEngineFactory<Simple > rulesFactory =

 new RulesEngineFactory<Simple>("TemplateRules.xls",

 Simple.class);

 Simple rules = (Simple) rulesFactory.newInstance();

 rules.hello1(12);

 }

}

When the class is run, it executes and displays Good Afternoon, World!

The interface can be generated by OpenL Tablets in runtime if the developer does not define it when initializing
the rule engine factory. In this case, rules can be executed via reflection.

The following example illustrates using a wrapper with a generated interface in runtime:
public static void callRulesWithGeneratedInterface(){

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 18 of 39

 // Creates new instance of OpenL Rules Factory

 RulesEngineFactory<?> rulesFactory =

new RulesEngineFactory<Object>("TemplateRules.xls");

 //Creates new instance of dynamic Java Wrapper for our lesson

Object rules = rulesFactory.newInstance();

 //Get current hour

 Calendar calendar = Calendar.getInstance();

 int hour = calendar.get(Calendar.HOUR_OF_DAY);

 Class<?> clazz = rulesFactory.getInterfaceClass();

try{

Method method = clazz.getMethod("hello1”, int.class);

out.println("* Executing OpenL rules...\n");

method.invoke(rules, hour);

}catch(NoSuchMethodException e){

}catch (InvocationTargetException e) {

}catch (IllegalAccessException e) {

}

}

This section includes the following topics:

• Using OpenL Tablets Rules with the Runtime Context

• Using OpenL Tablets Projects from Java Code

• Accessing a Test Table from Java Code

• Generating Java Classes from Datatype Tables

Using OpenL Tablets Rules with the Runtime Context

This section describes using runtime context for dispatching versioned rules by dimension properties values.

For example, two rules are overloaded by dimension properties. Both rules have the same name.

The first rule, covering an Auto line of business, is as follows:

Figure 4: The Auto rule

Pay attention to the rule line with the LOB property.

The second rule, covering a Home line of business, is as follows:

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 19 of 39

Figure 5: The Home rule

A wrapper enables the user to define which of these rules must be executed:
// Getting runtime environment which contains context

IRuntimeEnv env = ((IEngineWrapper) rules).getRuntimeEnv();

// Creating context

IRulesRuntimeContext context = new DefaultRulesRuntimeContext();

env.setContext(context);

// define context

context.setLob("Home”);

As a result, the code of the wrapper with the run-time context resembles the following:
import static java.lang.System.out;

import org.openl.rules.context.DefaultRulesRuntimeContext;

import org.openl.rules.context.IRulesRuntimeContext;

import org.openl.rules.runtime.RulesEngineFactory;

import org.openl.runtime.IEngineWrapper;

import org.openl.vm.IRuntimeEnv;

public class ExampleOfUsingRuntimeContext {

 public static void main(String[] args) {

 //define the interface

 RulesEngineFactory<simple> rulesFactory = new

RulesEngineFactory<Simple>("TemplateRules.xls", Simple.class);

 Simple rules = (Simple) rulesFactory.newInstance();

 // Getting runtime environment which contains context

 IRuntimeEnv env = ((IEngineWrapper) rules).getRuntimeEnv();

 // Creating context (most probably in future, the code will be different)

 IRulesRuntimeContext context = RulesRuntimeContextFactory.

buildRulesRuntimeContext(); env.setContext(context);

 context.setLob("Home");

 rules.hello1(12);

 }

}

Run this class. In the console, ensure that the rule with lob = Home was executed. With the input parameter int
= 12, the It is Afternoon, Guys phrase is displayed.

Using OpenL Tablets Projects from Java Code

OpenL Tablets projects can be instantiated via SimpleProjectEngineFactory. This factory is designed to be
created via SimpleProjectEngineFactoryBuilder. A builder has to be configured. The main builder method is
setProject(String location). The project location folder has to be specified via this method.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 20 of 39

The following example instantiates the OpenL Tablets project:
ProjectEngineFactory<Object> projectEngineFactory = new

SimpleProjectEngineFactory.SimpleProjectEngineFactoryBuilder<Object>().setProject(<project

location>) .build();

Object instance = projectEngineFactory.newInstance();

The above example instantiates the OpenL Tablets project generated in runtime interface. A method from
instantiated project can be invoked via reflection mechanism. ProjectEngineFactory returns generated
interface via the getInterfaceClass() method.

If a static interface must be used, the interface must be specified in SimpleProjectEngineFactoryBuilder.
The following example illustrates how to instantiate a project with a static interface.
SimpleProjectEngineFactory<SayHello> simpleProjectEngineFactory = new

SimpleProjectEngineFactoryBuilder<SayHello>().setProject<project location>)

 .setInterfaceClass(SayHello.class)

 .build();

SayHello instance = simpleProjectEngineFactory.newInstance();

SimpleProjectEngineFactoryBuilder has additional methods to configure an engine factory. Examples are as
follows:

• The setWorkspace()method defines a project workspace for dependent projects resolving.

• The execution mode can be changed via the setExecutionMode() method.

By default, runtime execution mode is enabled.

• The setProvideRuntimeContext(true) method is used to provide runtime context for an instance class.

• The setProvideVariations(true) method is used to enable variation support for an instance class, which
is disabled by default.

• The setModule(String moduleName) method is used to compile a single module from a project.

• The setClassLoader(ClassLoader classLoader) method is used to set up a custom class loader to be
used as a primary one in the OpenL Tablets engine.

Accessing a Test Table from Java Code

Test results can be accessed through the test table API. For example, the following code fragment executes all
test runs in a test table called insuranceTest and displays the number of failed test runs:
RulesEngineFactory<?> rulesFactory = new RulesEngineFactory<?>("Tutorial_1.xls");

IOpenClass openClass = rulesFactory.getCompiledOpenClass();

IRuntimeEnv env = SimpleVMFactory.buildSimpleVM().getRuntimeEnv();

Object target = openClass.newInstance(env);

IOpenMethod method = openClass.getMatchingMethod("testMethodName", testMethodParams);

TestUnitsResults res = (TestUnitsResults) testMethod.invoke(engine, new Object[0], env);

Generating Java Classes from Datatype Tables

Some rules require complex data models as input parameters. Developers have to generate classes for each
datatype defined in an Excel file for using them in a static interface as method arguments. The static interface
can be used in engine factory. For more information on how to create and use a wrapper, see Using OpenL
Tablets Rules from Java Code.

Note: Datatype is an OpenL table of the Datatype type created by a business user. It defines a custom data type. Using
these data types inside the OpenL Tablets rules is recommended as the best practice. For more information on
datatypes, see [OpenL Tablets Reference Guide], the Datatype Table section.

To generate datatype classes, proceed as follows:

1. For Maven, configure the OpenL Maven plugin as described in Configuring the OpenL Maven Plugin and run
the Maven script.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Reference%20Guide.pdf

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 21 of 39

2. For Ant, configure the Ant task file as described in Configuring the Ant Task File and execute the Ant task file.

Configuring the OpenL Maven Plugin

To generate an interface for rules and datatype classes defined in the MS Excel file, add the following Maven
configuration to the pom.xml file:
<build>

 [...]

 <plugins>

 [...]

 <plugin>

 <groupId>org.openl.rules</groupId>

 <artifactId>openl-maven-plugin</artifactId>

 <version>${openl.rules.version}</version>

 <configuration>

 <generateInterfaces>

 <generateInterface>

 <srcFile>src/main/openl/rules/TemplateRules.xls</srcFile>

 <targetClass>

 org.company.gen.TemplateRulesInterface

 </targetClass>

 </generateInterface>

 </generateInterfaces>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>generate</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 [...]

</build>

In this case, classes and rules project descriptor, rules.xml, is generated on each Maven run on generate-
sources phase.

Each <generateInterface> section has a number of parameters described in the following table.

<generateInterface> section parameters

Name Type Required Description

srcFile String true Reference to the Excel file for which an interface class must be
generated.

targetClass String true Full name of the interface class to be generated. OpenL Tablets
WebStudio recognizes modules in projects by interface classes
and uses their names in UI. If there are multiple wrappers with
identical names, only one of them is recognized as a module in
OpenL Tablets WebStudio.

displayName String false End user-oriented title of the file that appears in OpenL Tablets
WebStudio. A default value is Excel file name without extension.

targetSrcDir String false Folder where the generated interface class must be placed. An
example is src/main/java.

The default value is ${project.build.sourceDirectory}.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 22 of 39

<generateInterface> section parameters

Name Type Required Description

openlName String false OpenL Tablets configuration to be used. For OpenL Tablets, the
org.openl.xls value must always be used.

The default value is org.openl.xls.

userHome String false Location of user-defined resources relative to the current OpenL
Tablets project. The default value is ..

userClassPath String false Reference to the folder with additional compiled classes that is
imported by the module when the interface is generated.

The default value is null.

ignoreTestMethods boolean false If true, test methods are not added to interface class. It is used
only in JavaInterfaceAntTask. The default value is true.

generateUnitTests boolean false Parameter that overwrites the base generateUnitTests value.

unitTestTemplatePath String false Parameter that overwrites the base unitTestTemplatePath value.

overwriteUnitTests boolean false Parameter that overwrites the base overwriteUnitTests value.

For more configuration options, see [OpenL Tablets Maven Plugin Guide].

Configuring the Ant Task File

An example of the build file is as follows:
<project name="GenJavaWrapper" default="generate" basedir="../">

<taskdef name="openlgen" classname="org.openl.conf.ant.JavaWrapperAntTask"/>

<target name="generate">

<echo message="Generating wrapper classes..."/>

<openlgen openlName="org.openl.xls" userHome="."

srcFile="rules/Rules.xls"

targetClass="com.exigen.claims.RulesWrapper"

displayName="Rule datatypes"

targetSrcDir="gen"

>

</openlgen>

<openlgen openlName="org.openl.xls" userHome="."

srcFile="rules/Data.xls"

targetClass=" com.exigen.claims.DataWrapper"

displayName="Data datatypes"

targetSrcDir="gen"

>

</openlgen>

</target>

</project>

When the file is executed, it automatically creates Java classes for datatypes for specified Excel files. The Ant
task file must be adjusted to match contents of the specific project.

For each Excel file, an individual <openlgen> section must be added between the <target> and </target> tags.

Each <openlgen> section has a number of parameters that must be adjusted as described in the following table:

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Maven%20Plugin%20Guide.pdf

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 23 of 39

<openlgen> section parameters

Parameter Description

openlName OpenL Tablets configuration to be used. For OpenL Tablets, the org.openl.xls value must
always be used.

userHome Location of user-defined resources relative to the current OpenL Tablets project.

srcFile Reference to the Excel file for which a wrapper class must be generated.

targetClass Full name of the wrapper class to be generated.

displayName End user-oriented title of the file that appears in OpenL Tablets WebStudio.

targetSrcDir Folder where the generated wrapper class must be placed.

Handling Data and Data Types in OpenL Tablets

This section includes the following topics about data and data types handling in OpenL Tablets:

• Datatype Lifecycle

• Inheritance in Datatypes

• Byte Code Generation at Runtime

• Java Files Generation

• OpenL Internals: Accessing a Datatype at Runtime and After Building an OpenL Wrapper

• Data Table

Datatype Lifecycle

Datatype lifecycle is as follows:

1. A Datatype table is created in the rules file.

At runtime, Java class is generated for each datatype as described in Byte Code Generation at Runtime.

2. If Java classes are generated from a Datatype table as described in Generating Java Classes from Datatype
Tables, the appropriate generated Java classes must be included in classpath as described in Java Files
Generation.

Inheritance in Datatypes

In OpenL Tablets, one datatype can be inherited from another one. The new data type inherited from another
one has access to all fields defined in the parent data type. If a child datatype contains fields defined in the
parent datatype, and the field is declared with different types in the child and the parent datatype, warnings or
errors appear.

The constructor with all fields of the child datatype contains all fields from the parent datatype, and the
toString, equals and hashCode methods use all fields form the parent datatype.

Byte Code Generation at Runtime

At runtime, when OpenL Tablets engine instance is being built, for each datatype component, Java byte code is
generated as described in Java Files Generation in case there are no previously generated Java files on classpath.
It represents a simple Java bean for this datatype. This byte code is loaded to classloader so the object of type
Class<?> can be accessed. When using this object through reflections, new instances are created and fields of
datatypes are initialized. For more information, see the DatatypeOpenClass and DatatypeOpenField classes.

Attention! If Java class files for the datatypes on classpath are previously generated, they are used at runtime,
regardless of changes made in Excel. To apply these changes, remove Java files and generate Java classes from
the Datatype tables as described in Generating Java Classes from Datatype Tables.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 24 of 39

Java Files Generation

As generation of datatypes is performed at runtime and developers cannot access these classes in their code,
the mechanism described at Generating Java Classes from Datatype Tables is introduced. It allows generating
Java files and putting them on the file system so users can use these data types in their code.

OpenL Internals: Accessing a Datatype at Runtime and After Building an OpenL Wrapper

After parsing, each data type is put to compilation context and becomes accessible for rules during binding. All
data types are placed to IOpenClass of the whole module and are accessible from
CompiledOpenClass#getTypes when the OpenL Tablets wrapper is generated.

Each TableSyntaxNode of the xls.datatype type contains an object of data type as its member.

Data Table

A data table contains relational data that can be referenced as follows:

• from other tables within OpenL Tablets

• from Java code through wrappers as Java arrays

• through the OpenL Tablets runtime API as a field of the Rules class instance

Figure 6: Simple data table

In this example, information in the data table can be accessed from the Java code as illustrated in the following
code example:
int[] num = tableWrapper.getNumbers();

for (int i = 0; i < num.length; i++) {

System.out.println(num[i]);

}

where tableWrapper is an instance of the wrapper class of the Excel file.

Figure 7: Datatype table and a corresponding data table

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 25 of 39

In Java code, the data table p1 can be accessed as follows:
Person[] persArr = tableWrapper.getP1();

for (int i = 0; i < persArr.length; i++) {

System.out.println(persArr[i].getName() + ' ' + persArr[i].getSsn());

}

where tableWrapper is an instance of the Excel file wrapper.

3.5 Customizing Table Properties
This section describes how to customize table properties and introduces table priority rules. The following topics
are included:

• Understanding Table Properties Customization

• Tables Priority Rules

Understanding Table Properties Customization

The OpenL Tablets design allows customizing available table properties. OpenL Tablets Engine employs itself to
provide support of properties customization. The TablePropertiesDefinitions.xlsx file contains all
declaration required to handle and process table properties.

Updating table properties requires recompiling the OpenL Tablets product. The developer has to contact the
OpenL Tablets provider to retrieve the table properties file. When the changes are made, the developer has to
send the file back to the provider, and a new OpenL Tablets package is delivered to the developer.

Alternatively, the developer can recompile OpenL Tablets from sources of their own.

Tables Priority Rules

To make tables dispatching more flexible, tablesPriorityRules DataTable in TablePropertiesDefinitions.xlsx
is used. Each element of this table defines one rule of how to compare two tables using their properties to find
more suitable table if several tables are matched by properties. Priority rules are used sequentially in
comparison of two tables: if one priority rule gives result of the same priority of tables, the next priority rule is
used.

Priority rules are used differently in the Dispatcher table approach and Java code dispatching but have the same
sense: select suitable table if there are several tables matched by dimension Properties.

In case of the Dispatching table, priority rules are used to sort methods of an overloaded group. Each row of the
Dispatcher table represents a rule, so after sorting, high priority rules are at the top of decision tables, and if
several rows of the decision table are fired, only the first one, of the highest priority, is executed.

In case of Java code, dispatching priority rules is used after selecting tables that correspond to the current
runtime context: all matched tables are sorted in order to select one with the highest priority. If it is impossible
to find the priority with the highest rule when several tables have the same priority and are of a higher priority
than all other tables, AmbiguousMethodException is thrown.

There are two predefined priority rules and possibility to implement Java class that compares two tables using
their properties:

• min(<property name>)

A table that has lower value of property specified will have a higher priority. The property specified by name
must be instanceof Comparable<class of property value>.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 26 of 39

• max(<property name>)

A table that has a higher value of property specified will have a higher priority. The property specified by
name must be instanceof Comparable<class of property value>.

To specify the Java comparator of tables, the javaclass:<java class name> expression must be used. Java
class must implement Comparator<ITableProperties>.

3.6 Tables Validation
The validation phase follows the binding phase and allows checking all tables for errors and accumulating all
errors.

All possible validators are stored in ICompileContext of the OpenL class. The default compile context is
org.openl.xls.RulesCompileContext that is generated automatically.
Validators get the OpenL Tablets and array of TableSyntaxNodes that represent tables for check and must
return ValidationResult. Validation results are as follows:

• status, which can be fail or success

• all error and warning messages that occurred

This section includes the following topics:

• Table Properties Validators

• Existing Validators

Table Properties Validators

The table properties that are described in TablePropertyDefinition.xlsx can have constraints. Some
constraints have predefined validators associated with them.

To add a property validator, proceed as follows:

1. Add constraint as follows:

1. Define constraint in TablePropertyDefinition.xlsx, in the constraints field.

2. Create constraint class and add it to ConstraintFactory.

2. Create a validator as follows:

1. Create a class of the validator and define it in the method
org.openl.codegen.tools.type.TablePropertyValidatorsWrapper.init() constraint associated
with the validator.

2. If necessary, modify the velocity script RulesCompileContext-validators.vm in project
org.openl.rules.gen that generates org.openl.xls.RulesCompileContext.

3. To generate new org.openl.xls.RulesCompileContext with the validator, run
org.openl.codegen.tools.GenRulesCode.main(String[]).

3. Write unit tests.

Existing Validators

The existing validators are as follows:

• Unique in module validator verifies uniqueness in a module of a property.

• Active table validator verifies correctness of an "active" property.

There can be only one active table validator per active table.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 27 of 39

• Regular expression validator verifies string properties matching against the predefined regex pattern.

• Gap/overlap validator makes gap and overlap analysis for decision tables with the validateDT property set
to on.

• Dimension properties validator.

3.7 Module Dependencies: Classloaders
The dependency class resolution mechanism is implemented using specialized classloading.

Each dependency has its own Java classloader so all classes used in compiling a specified module, including
generated datatype Java classes, are stored in the dependency classloader.

Dependency A
Classloader A

Class A Dependency B
Classloader B

Class B

Dependency C
Classloader C

Class C

Figure 8: Dependency classloaders

The root module contains references to all its dependencies classloaders. When loading any class, the following
algorithm is executed:

1. Get all dependencies classloaders.

2. Search for the required class in each dependency classloader, one by one.

3. If a class is found, return it.

4. If a class does not exist, search for the class by its classloader.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 28 of 39

Dependency A
Classloader A

Class A Dependency B
Classloader B

Class B

Dependency C
Classloader C

Class C

Root Module
Classloader

loadClass()

Figure 9: Load class from root module

For the dependency management feature, provide an appropriate DependencyManager object to the entry point
for the OpenL Tablets compilation.

Note: Using the same class in two classloaders can cause an error because the class will be loaded by two different
classloaders.

3.8 Peculiarities of OpenL Tablets Implementation
This section describes OpenL Tablets implementation specifics and includes the following topics:

• Lookup Tables Implementation Details

• Range Types Instantiation

Lookup Tables Implementation Details

At first, a lookup table goes through parsing and validation. In parsing, all parts of the table, such as header,
column headers, vertical conditions, horizontal conditions, return column, and their values are extracted. In
validation, OpenL checks if the table structure is proper.

To work with this kind of a table, the TransformedGridTable object is created with the constructor parameters
it had in the original grid table of the lookup table, without a header, and CoordinatesTransformer that
converts table coordinates to work with both vertical and horizontal conditions.

As a result, a GridTable is received. It works as a decision table structure. All coordinate transformations with
lookup structure go inside. The work with columns and rows is based on the physical, not logical, structure of
the table.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 29 of 39

Range Types Instantiation

IntRange can be created in one of the following ways:

IntRange creation methods

Format Description

new IntRange(int min_number,

int max_number)
Covers all numbers between min_number and max_number, including borders.

new IntRange(Integer value) Covers only a given value as the beginning and the end of the range.

new IntRange(String

rangeExpression)
Borders are parsed by formats of rangeExpression.

The same formats and restrictions are used in DoubleRange.

OpenL Tablets Developer's Guide OpenL Tablets Business Expression Language

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 30 of 39

4 OpenL Tablets Business Expression Language
The OpenL Tablets language framework has been designed from the ground up to allow flexible combination of
grammar and semantics. OpenL Tablets Business Expression (BEX) language proves this statement on practice by
extending existing OpenL Tablets Java grammar and semantics presented in org.openl.j configuration by new
grammar and semantic concepts that allow users to write "natural language" expressions.

The following topics are included in this chapter:

• Java Business Object Model as a Basis for OpenL Tablets Business Vocabulary

• New Keywords and Avoiding Possible Naming Conflicts

• Simplifying Expressions with Explanatory Variables

• Simplifying Expressions by the Using Unique in Scope Concept

• OpenL Tablets Programming Language Framework

4.1 Java Business Object Model as a Basis for OpenL Tablets
Business Vocabulary

OpenL Tablets minimizes the effort required to build a business vocabulary. Using BEX does not require any
special mapping, and the existing Java BOM automatically becomes the basis for OpenL Tablets business
vocabulary (OBV). For example, the following expressions are equivalent:
driver.age

and
Age of the Driver

Another example:
policy.effectiveDate

and
Effective Date of the Policy

4.2 New Keywords and Avoiding Possible Naming Conflicts
In the previous chapter, a new of the keyword was introduced. There are other, self-explanatory, keywords in
BEX language:

• is less than

• is more than

• is less or equal

• is no more than

• is more or equal

• is no less than

When adding new keywords to OpenL Tablets BEX language, there is a chance of a name clash with business
vocabulary. The easiest way to avoid this clash is to use upper case notation when referring to the model
attributes because BEX grammar is case-sensitive and all new keywords appear in the lower case. For example,
there is an attribute called isLessThanCoverageLimit. When referring to it as is less than coverage
limit, there is going to be a name clash with the keyword, but if Is Less Than Coverage Limit is written, no

OpenL Tablets Developer's Guide OpenL Tablets Business Expression Language

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 31 of 39

clash appears. Possible direction in extending keywords is to add numeric, measurement units, measure
sensitive comparisons, such as is longer than or is colder than, or use any other similar approach.

4.3 Simplifying Expressions with Explanatory Variables
Consider a rather simple expression in Java:
(vehicle.agreedValue - vehicle.marketValue) / vehicle.marketValue > limitDefinedByUser

In BEX language, the same expression can be rewritten in a business-friendly way:
(Agreed Value of the vehicle - Market Value of the vehicle) / Market Value of the vehicle is

more than Limit Defined By User

Unfortunately, the more complex is the expression, the less comprehensible the "natural language" expression
becomes. OpenL Tablets BEX offers an elegant solution for this problem:
(A - M) / M > X, where

 A - Agreed Value of the vehicle,

 M - Market Value of the vehicle,

 X - Limit Defined By User

The syntax resembles the one used in scientific publications and is easy to understand for anybody. It is believed
that the syntax provides the best mix of mathematical clarity and business readability.

4.4 Simplifying Expressions by Using the Unique in Scope
Concept

Humans differ from computers, in particular, by their ability to understand the scope of a language expression.
For example, when discussing an insurance policy and the effective date is mentioned, there is no need to say
the fully qualifying expression the effective date of the policy every time, because the context of the effective
date is clearly understood. On the other hand, when discussing two policies, for example, the old and the new
ones, one needs to say the effective date of the new policy, or the effective date of the old policy, to
differentiate between two policies.

Similarly, when humans write so-called business documents, that is, files that serve as a reference point to a rule
developer, they also often use an implied context in mind. Therefore in documentation, they often use business
terms, such as effective date, driver, and account, with the implied scope in mind. Scope resolution is left to a
so-called rules engineer, who has to do it by manually analyzing BOM and setting appropriate paths from root
objects.

OpenL Tablets BEX tries to close this semantic gap or at least make it a bit narrower by using attributes unique in
scope. For example, if there is only one policy in the scope, user can write effective date instead of effective
date of the policy. OpenL Tablets BEX automatically determines the uniqueness of the attribute and either
produces a correct path, or emits an error message in case of an ambiguous statement. The level of the
resolution can be modified programmatically and by default equals to 1.

4.5 OpenL Tablets Programming Language Framework
Business rules consist of rules, where each rule has a condition and action. A condition is a Boolean expression,
the one that returns true or false. An action can be any sequence, usually simple, of programming statements.

Consider an expression driver.age < 25.

OpenL Tablets Developer's Guide OpenL Tablets Business Expression Language

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 32 of 39

From semantic perspective, the expression defines the relationship between a value defined by the driver.age
expression and literal 25. This can be interpreted as age of the driver is less than 25 years or select drivers who
are younger than 25 years old, or any other similar phrase.

From the programming language perspective, the semantic part is irrelevant due to the following reasons:

• A statement must be valid in the language grammar.

• A statement must be correct from the type-checking point of view.

• If the language is compiled, the results of compiling, such as valid binary code, or bytecode, or code in
another target language, can be considered as possible results of compiling and must be produced from the
statement.

• A runtime system, interpreter, or virtual machine must be able to execute, or interpret, this statement's
compiled code and produce a resulting object.

The following topics are included in this section:

• OpenL Tablets Grammars

• Context, Variables and Types

• OpenL Tablets Type System

• OpenL Tablets as OpenL Tablets Type Extension

• Operators

• Binary Operators Semantic Map

• Unary Operators

• Cast Operators

• Strict Equality and Relation Operators

• List of org.openl.j Operators

• List of opg.openl.j Operator Properties

OpenL Tablets Grammars

When the OpenL Tablets parser parses an OpenL Tablets expression, it produces a syntax tree. Each tree node
has a node type, a literal value, a reference to the source code for displaying errors and debugging, and also may
contain child nodes. This is similar to what other parsers do, with one notable exception – the OpenL Tablets
Grammar is not hard-coded, it can be configured, and a different one can be used. For all practical purposes, as
of today, only the following grammars implemented in OpenL Tablets are distributed:

OpenL Tablets grammar

Grammar Description

org.openl.j Based on the classic Java 1.3 grammar. No templates and exception handling are supported.

org.openl.bex org.openl.j grammar with business natural language extensions.

By default, org.openl.bex is used in the OpenL Tablets business rules product.

An experimental org.openl.n3 grammar is available, and org.openl.sql grammar is targeted to be added in the
future.

The syntax tree produced by the org.openl.j grammar for the expression mentioned previously in this chapter is
as follows:
 <

 / \

 . 25

 / \

driver age

OpenL Tablets Developer's Guide OpenL Tablets Business Expression Language

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 33 of 39

 Types of nodes are as follows:

• op.binary.lt for '<'

• literal.integer for '25'

• chain for '.'

• identifier for 'driver'

• identifier for 'age'

Node type names are significant. More information on the type names is available further in this chapter.

 The grammar used in org.openl.j is similar not only to Java but to any other language in the
C/C++/Java/C# family. This makes OpenL Tablets easily to learn and apply by the huge pool of available Java/Cxx
programmers and adds to its strength. Proliferation of new languages like Ruby and Groovy, multiple proprietary
languages used in different business rules engines, CEP engines and so on, introduce new semantics to the
programming community and make usage of new technologies much harder.

OpenL Tablets team makes their best to stay as close to the Java syntax as possible to make sure that the
"entities would not be multiplied beyond necessity".

Context, Variables and Types

After the syntax tree is created, syntax nodes must be bound to their semantic definitions. At this stage, OpenL
Tablets uses specific binders for each node type. The modular structure of OpenL Tablets allows definition of
custom binders for each node type. Once a syntax node is bound into the bound node, it is assigned a type, thus
making the process type-safe.

Most of the time, the standard Java approach is used to assign type to the variable, so it must be defined in the
context of the OpenL Tablets framework. Typical examples include the following components:

• method parameter

• local variable

• member of surrounding class

For OpenL Tablets, it is usually the implementation of IOpenClass called module.

• external types accessed as static, which are mostly Java classes imported into OpenL Tablets

Fields and methods used in binding context do not exist in Java; OpenL Tablets allows programmatically adding
custom types, fields, and methods into binding context. For different examples of how it can be done, see the
source code of the OpenLBuilder classes in different packages. For example, org.openl.j automatically imports
all classes from the java.util in addition to the standard java.lang package. Since version 5.1.1, java.math is
imported automatically.

OpenL Tablets Type System

Java is a type-safe language. However, its type-safety ends when Java has to deal with types that lie outside of
the Java type system, such as database tables, http requests, or XML files.

There are two approaches to deal with those external types:

Approaches to deal with types outside the Java type system

Approach Specifics

using API • API approach is inherently not type-safe, it treats attribute as literal strings; therefore, even spelling
errors become visible only in runtime.

• Unless the standard API exists, user’s program becomes dependent on the particular API.

using code • Code generation requires an extra building step and is dependent on particular generator, especially
the part where names and name spaces are converted into Java names and packages.

OpenL Tablets Developer's Guide OpenL Tablets Business Expression Language

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 34 of 39

Approaches to deal with types outside the Java type system

Approach Specifics

generation • Often, generators introduce dependencies with runtime libraries that affect portability of the code.

• Generators usually require full conversion from external data into Java objects that may incur an
unnecessary performance penalty when only a few attributes must be accessed.

The OpenL Tablets open type system provides a simple way of adding new types into the OpenL Tablets
language. It only requires defining a class object that implements the OpenClass interface and adding it to the
OpenL Tablets type system. Implementations can vary, but access to object attributes and methods has the
same syntax and provides the same type-checking in all OpenL Tablets code throughout the user application.

OpenL Tablets as OpenL Tablets Type Extension

OpenL Tablets is built on top of the OpenL Tablets type system, thus enabling natural integration into any Java
or OpenL Tablets environment. Using the OpenL Tablets methodology, decision tables become methods, and
data tables become fields. Similar conversion happens to all project artifacts. As a result, any project component
can be easily modularly accessed through Java or OpenL Tablets code. An OpenL Tablets project itself becomes a
class and easy Java access to it is provided through a generated JavaWrapper class.

Operators

Operators are methods with priorities defined by grammar. OpenL Tablets has two major types of operators,
unary and binary. In addition, there are operator types used in special cases. A complete list of OpenL Tablets
operators used in org.openl.j grammar is available at List of org.openl.j Operators.

OpenL Tablets has a modular structure, so OpenL Tablets has configurable, high-level separate components like
parser and binder, and each node type can have its own NodeBinder. At the same time, the single NodeBinder
can be assigned to a group of operators, as in the case of the op.binary prefix.

op.binary.or || and op.binary.and && have separate NodeBinders to provide short-circuiting for boolean
operands. For all other binary operators, OpenL Tablets uses a simple algorithm based on the operator's node
type name. For example, if the node type is op.binary.add, the algorithm looks for the add() method named in
the following order:

• Tx add(T1 p1, T2 p2) in the org.openl.operators namespace in BindingContext

• public Tx T1.add(T2 p2) in T1

• static public Tx T1.add(T1 p1, T2 p2) in T1

• static public Tx T2.add(T1 p1, T2 p2) in T2

The found method is executed in runtime. So, to override binary operator t1 OP t2, where t1, t2 are objects of
classes T1, T2, perform the following steps:

1. Check operators and find the operator's type name.

The last part of the type name is the name of the method to be implemented.

2. Use one of the following options available for implementing operators:

• Put it into the YourCustomOperators class as a static method and register the class as a library in the
org.openl.operators namespace

For more information on how to do that, see OpenLBuilder code.

• Implement public Tx name(T2 p2) as method in T1.

• Implement Tx name(T1 p1,T2 p2) as method in T1.

• Implement static public Tx name(T1 p1,T2 p2) as method in T2.

OpenL Tablets Developer's Guide OpenL Tablets Business Expression Language

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 35 of 39

3. If T1 and T2 are different, define both OP(T1, T2) and OP(T2, T1), unless autocast() operator can be relied on
or binary operators semantic map. Autocast can help skipping implementation when there is already an
operator implemented for the autocasted type.

For example, when having OP(T1, double), there is no need to implement OP(T1, int) because int is
autocasted to double. Some performance penalty can be incurred by doing this though. For more
information on binary operators semantic map, see Binary Operators Semantic Map.

Binary Operators Semantic Map

There is a convenient feature called operator semantic map. It makes implementing some of the operators
easier by describing symmetrical and inverse properties for some operators as described in List of opg.openl.j
Operator Properties.

Unary Operators

For unary operators, the same method resolution algorithm is being applied, with difference that there is only
one parameter to deal with.

Cast Operators

Cast operators in general correspond to Java guidelines and come in two types, cast and autocast. T2 autocast
(T1 from, T2 to) methods are used to overload implicit cast operators, as from int to long, so that actually no
cast operators are required in code, T2 cast(T1 from, T2 to) methods are used with explicit cast operators.

Note: It is important to remember that while both cast() and autocast() methods require two parameters, only T1 from
parameter is actually used. The second parameter is used to avoid ambiguity in Java method resolution.

Strict Equality and Relation Operators

Strict operators are the same as their original prototypes used for strict comparison of float point values. Float
point numbers are used in JVM as value with an inaccuracy. The original relation and equality operators are used
with inaccuracy of float point operations. An example is as follows:
1.0 == 1.0000000000000002 – returns true value,

1.0 ==== 1.0000000000000002 (1.0 + ulp(1.0)) – returns false value,

where 1.0000000000000002 = 1.0 + ulp(1.0).

List of org.openl.j Operators

The org.openl.j operators in order of priority are as follows:

org.openl.j operators

Operator org.openl.j operator

Assignment

= op.assign

+= op.assign.add

-= op.assign.subtract

*= op.assign.multiply

/= op.assign.divide

%= op.assign.rem

OpenL Tablets Developer's Guide OpenL Tablets Business Expression Language

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 36 of 39

org.openl.j operators

Operator org.openl.j operator

&= op.assign.bitand

|= op.assign.bitor

^= op.assign.bitxor

Conditional Ternary

? : op.ternary.qmark

Implication

-> op.binary.impl (*)

Boolean OR

|| or "or" op.binary.or

Boolean AND

&& or "and" op.binary.and

Bitwise OR

| op.binary.bitor

Bitwise XOR

^ op.binary.bitxor

Bitwise AND

& op.binary.bitand

Equality

== op.binary.eq

!= op.binary.ne

==== op.binary.strict_eq (*)

!=== op.binary.strict_ne (*)

Relational

< op.binary.lt

> op.binary.gt

<= op.binary.le

>= op.binary.ge

<== op.binary.strict_lt (*)

>== op.binary.strict_gt (*)

<=== op.binary.strict_le (*)

>=== op.binary.strict_ge (*)

Bitwise Shift

<< op.binary.lshift

>> op.binary.rshift

>>> op.binary.rshiftu

Additive

OpenL Tablets Developer's Guide OpenL Tablets Business Expression Language

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 37 of 39

org.openl.j operators

Operator org.openl.j operator

+ op.binary.add

- op.binary.subtract

Multiplicative

* op.binary.multiply

/ op.binary.divide

% op.binary.rem

Power

** op.binary.pow (*)

Unary

+ op.unary.positive

- op.unary.negative

++x op.prefix.inc

--x op.prefix.dec

x++ op.suffix.inc

x-- op.suffix.dec

! op.unary.not

~ op.unary.bitnot

(cast) type.cast

|x| op.unary.abs (*)

Note: (*) Operators do not exist in Java standard and exist only in org.openl.j. They can be used and overloaded if
necessary.

List of opg.openl.j Operator Properties

opg.openl.j operator properties

Operator group Operators

Symmetrical eq(T1,T2) <=> eq(T2, T1)

add(T1,T2) <=> add(T2, T1)

Inverse le(T1,T2) <=> gt(T2, T1)

lt(T1,T2) <=> ge(T2, T1)

ge(T1,T2) <=> lt(T2, T1)

gt(T1,T2) <=> le(T2, T1)

OpenL Tablets Developer's Guide Externalized Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 38 of 39

5 Externalized Configuration
OpenL Tablets supports externalizing application configuration to work with the same application in different
environments. For configuration externalization, properties files and command-line arguments are used.

The following topics are included in this section:

• Accessing Command Line Properties

• Using Property Files

5.1 Accessing Command Line Properties
By default, OpenL Tablets converts any command line option arguments into a property which starts with -D,
such as -Druleservice.datasource.filesystem.supportDeployments=true, and adds it to the OpenL
Tablets environment.

Example:
$: /startup.cmd -Druleservice.datasource.filesystem.supportDeployments=true

5.2 Using Property Files
This section describes how to externalize application configuration using application property files and profile-
specific properties and includes the following topics:

• Application Property Files

• Profile-Specific Properties

Application Property Files

OpenL Tablets loads properties from the application.property files to the following locations and adds them
to the OpenL Tables environment:

• ${openl.home} directory

• %USER_HOME% directory

• /config subdirectory of the current directory

• /conf subdirectory of the current directory

• current directory

• classpath:config/
• classpath:conf/

• classpath:

Note: The list is ordered by precedence, that is, properties defined in locations higher in the list override those defined in
lower locations.

OpenL Tablets supports the {appName}.properties alias of the application.property file, where {appName}
is the application name of the running application context.

Profile-Specific Properties

Profile-specific properties can be also defined by using the following naming convention:

• application-{profile}.properties

OpenL Tablets Developer's Guide Externalized Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 39 of 39

• {appName}-{profile}.properties

Profile-specific properties are loaded from the same locations as the standard application.properties file
and always override default properties.

If several profiles are specified in the spring.profile.active property, the existing property file of the last
profile overrides the previous ones. For example, the property spring.profile.active contains the dev-
openl,app01-openl values, so the OpenL Tablets Engine will be looking for the next property files:

• {appName}-app01-openl.properties

• {appName}-dev-openl.properties

• {appName}.properties

• application-app01-openl.properties

• application-dev-openl.properties

• application.properties

Note: The list ordered is ordered by precedence, that is, properties defined in locations higher in the list override those
defined in lower locations)

	1 Preface
	1.1 Audience
	1.2 Related Information
	1.3 Typographic Conventions

	2 Introducing OpenL Tablets
	2.1 What Is OpenL Tablets?
	2.2 Basic Concepts
	Rules
	Tables
	Projects
	Wrapper
	Execution Mode for OpenL Project

	2.3 System Overview
	2.4 Quick Start with OpenL Tablets

	3 OpenL Tablets Rules Projects
	3.1 OpenL Rules Project
	3.2 Rules Project Descriptor
	Quick Overview
	Descriptor Elements
	Project Configurations
	Module Configurations
	Dependency Configurations
	Classpath Configurations

	3.3 Project Resolving
	3.4 How to Start with OpenL Rules Project
	Creating a Project Using the Maven Archetype
	Creating a Project in OpenL Tablets WebStudio
	Creating a Project Manually
	Editing Rules
	Using OpenL Tablets Rules from Java Code
	Using OpenL Tablets Rules with the Runtime Context
	Using OpenL Tablets Projects from Java Code
	Accessing a Test Table from Java Code
	Generating Java Classes from Datatype Tables
	Configuring the OpenL Maven Plugin
	Configuring the Ant Task File

	Handling Data and Data Types in OpenL Tablets
	Datatype Lifecycle
	Inheritance in Datatypes
	Byte Code Generation at Runtime
	Java Files Generation
	OpenL Internals: Accessing a Datatype at Runtime and After Building an OpenL Wrapper
	Data Table

	3.5 Customizing Table Properties
	Understanding Table Properties Customization
	Tables Priority Rules

	3.6 Tables Validation
	Table Properties Validators
	Existing Validators

	3.7 Module Dependencies: Classloaders
	3.8 Peculiarities of OpenL Tablets Implementation
	Lookup Tables Implementation Details
	Range Types Instantiation

	4 OpenL Tablets Business Expression Language
	4.1 Java Business Object Model as a Basis for OpenL Tablets Business Vocabulary
	4.2 New Keywords and Avoiding Possible Naming Conflicts
	4.3 Simplifying Expressions with Explanatory Variables
	4.4 Simplifying Expressions by Using the Unique in Scope Concept
	4.5 OpenL Tablets Programming Language Framework
	OpenL Tablets Grammars
	Context, Variables and Types
	OpenL Tablets Type System
	OpenL Tablets as OpenL Tablets Type Extension
	Operators
	Binary Operators Semantic Map
	Unary Operators
	Cast Operators
	Strict Equality and Relation Operators
	List of org.openl.j Operators
	List of opg.openl.j Operator Properties

	5 Externalized Configuration
	5.1 Accessing Command Line Properties
	5.2 Using Property Files
	Application Property Files
	Profile-Specific Properties

